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THEORY OF LIGHT-INDUCED DRIFT OF ELECTRONS

IN COUPLED QUANTUM WELLS

Mark I. Stockxnan*, Leonid S. Muratov*, and Thomas F. George

Departments of Physics and Chemistry

Washington State University

Pullman, Washington 99164-2814

A theory of the new effect of light-induced drift (LID) in coupled potential wells

is developed on the basis of the density-matrix method. The effect appears when light

excites intersubband electronic transitions. LID manifests itself as the photocurrent of the

2-d electron gas in the well plane, which depends on coherent electron tunneling between

the coupled wells. The theory shows the effect to possess distinctive features such as a

characteristic antisymmetric spectral contour consisting of four alternating positive and

negative peaks and the change of sign of the LID current with the sign change of the bias

normal to the quntum-well plane. The quantitative estimates for GaAs wells show the

LID current to be readily detectable.
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I. INTRODUCTION

The effect of light-induced drift (LID) in gas mixtures suggested in Ref. 1 manifests

itself as a drift of absorbing particles in response to optical excitation with frequency

close, but not exactly equal, to the resonant frequency of an internal transition in the

particles. Characteristically, the spectral contour of LID is antisymmetric with respect

to detuning from the internal transition frequency. LID has been observed2 and studied

in detail later (see, e.g., Ref. 3 and the references cited therein).

The effect of LID is based on two features: (i) velocity-selective excitation of parti-

cles and (ii) dependence of the translational relaxation rate of the particles on their in-

ternal state. The velocity-selective excitation of particles is produced due to the Doppler

shift. Consider, for instance, optical excitation red-shifted with respect to the exact res-

onance. Then the particles which move toward the light source sense a blue Doppler

shift which compensates the radiation detuning. Such particles are more likely to un-

dergo excitation. As a result, their collision rate with a buffer gas, and consequently, the

friction force acting upon them are changed. For the particles moving in the opposite

direction, there is no excitation and no change of friction. Compelled by the disbalance

in the friction forces for these two groups of particles, the absorbing component moves

as a whole. The effect of surface LID predicted in Ref. 4 and observed in 5 is similar to

the original LID, but is based on collisions of the absorbing particles with the walls of I.

the confining cell rather than with the buffer gas.

LID of electrons in semiconductors predicted in Refs. 6 and 7 and later observed'

relies on parallel electron-energy bands in a quantizing magnetic field, where an electron

moves freely in the field direction, and light excites transitions between the Landau

levels. The translational motion of electrons in the field direction yields velocity-selective

excitation which can be interpreted in terms of the Doppler shift, as has originally been

suggested in Ref. 9 (see also Ref. 10). Because the electron translational relaxation 0
5

depends on which of the Landau states the electron occupies, LID takes place.

Another case of parallel energy bands mentioned in Ref. 6 is that of electrons in

two-dimensional quantum structures, such as inversion layers, thin films, etc., where the :odes

quantum state in the perpendicular direction plays the role of an internal state of the 'or
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particle. Provided the translation relaxation depends on this state, LID occurs along the

projection of the light wave vector k onto the plane of the structure. However, no theory

of such an effect is given in Ref. 6.

The photon drag effect (PDE) in semiconductor quantum wells has been

suggested 11"12 and observed experimentally."i Like in Ref. 6, velocity-selective excita-

tion in Refs. 11 and 12 is due to the parallel subbands, and a difference of the lifetimes

of the subband states is invoked, which makes this type of PDE to be similar to LID.

Characteristically, this difference is due to optical phonon emission which is energetically

possible in the excited subband.' ", 2

The effect of LID in single quantum wells' 4 is based on a different structure of the

electron wave function in the normal direction, along the lines of Ref. 6. Specifically, the

state-dependent relaxation in Ref. 14 is due to an increased intrusion of the electron wave

function into the barrier regions in the excited subband (see also Ref. 15). Provided that

the doping of the barrier and well regions is different, the scattering rate is different in

the ground and excited subbands.

The present paper is devoted to the theory of the LID effect in coupled quan-

tum wells. Such systems allow one to fully capitalize on the different structures of the

wave functions in the ground and excited states to achieve state-dependent relaxation,

which originates from quantum delocalization of the electron driven by resonant coherent

tunneling between the wells. Because of the importance of polarization relaxation (de-

phasing), the density-matrix approached is invoked, similar to Ref. 14. The qualitative

description of the effect and equations of motion for the density matrix are presented

in Sec. II. Analytical solutions and numerical examples are considered in Sec. III. The

results are discussed in Sec. IV.

II. QUALITATIVE DESCRIPTION

AND DENSITY-MATRIX EQUATIONS

We consider the LID effect driven by electron delocalization over coupled quantum

wells. This effect can exist in different quantum structures, where coherent tunneling of

electrons between individual quantum wells is possible. For the sake of definiteness and

simplicity, we restrict ourselves to the simplest of such structures, a double quantum well
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(Fig. 1). The excited state 12) in the right well (numbered I in Fig. 1) and, say, the

ground state 13) in the left (II) well are aligned by the bias field as shown, or by the

corresponding design of the double well to allow the resonant tunneling of electrons. The

barrier regions are supposed to be modulation-doped to yield the electron population

of the structure and allow pure electronic intersubband transitions, which only will be

considered.

One of the wells, say II, is supposed to be doped to create neutral scattering centers.

When an electron is excited, by virtue of the resonant tunneling it is delocalized over both

the wells. The electron experiences more frequent collisions in the doped II well, resulting

in faster translational relaxation in its excited state than in the overall ground state 11),

because state 11) is mainly localized in the undoped I well.

For the system under consideration, LID can be described ar follows. The light

has frequency close but not exactly resonant to the intersubband transition from the II)
state to an excited state. Electrons move in the well plane due to their thermal motion

for the nondegenerate electron gas or inside their Fermi surface for the degenerate gas.

Those electrons for which the Doppler shift compensates the light detuning are excited,

delocalize over the two wells, and, consequently, experience faster translational relaxation,

i.e. greater friction force than the electrons moving in the opposite direction. Compelled

by this force, the electron gas moves as a whole.

We emphasize that the effect is fundamentally based on quantum-mechanical delo-

calization, i.e. on the presence of an electron simultaneously in two wells. In this case,

the collisions of electrons in the doped (II) well implies translational relaxation of the

electron gas as a whole, which is required for LID. The quantum-mechanical delocaliza-

tion over two wells is brought about by coherent tunneling, the condition for which is

that the tunneling amplitude -r is much greater than the polarization-relaxation rate F.

In the opposite case, I7 < F, the tunneling is incoherent and the electron gas separates

into two distinguishable weakly-coupled components, one in the I well and the other in

the II well. For both the components, the relaxation is not state-dependent and, con-

sequently, LID is absent, albeit the concentration of electrons in the II well may be not

very small as is the case in Ref. 16. In this respect, the present effects resembles the

resistance resonance 17 and, similar to it, can also be considered as an independent test
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of quantum mechanics.

The present effect differs from the phenomena described in Refs. 11 and 14 because

it requires coherent tunneling and quantum delocalization of electrons between the wells.

This brings about a different excitation spectrum and enhanced sensitivity to dephasing

(polarization relaxation).

To describe the effect, we have to take into account the processes of intersubband

excitation, the population and polarization relaxation along with tunneling between the

wells and the translational movement and relaxation in the plane of the quantum struc-

ture. As an adequate technique, we will use the quantum Liouville equation for the

one-electron density matrix Pab in the Wigner representation. This quantity is defined

as Pab(P, r) = -q exp(iqr)pab(p, q), where pb(p, q) =(atp-qaap+ q) is the Fourier

transform I8 of Pab(P, r) over r, a is the electron annihilation operator, a and b denote the

states in the well (a, b = 1, 2, 3), r is the coordinate vector, and p, q are the momentum

vectors which all lie in the plane of the wells.

The Hamiltonian of the electron plus an external optical field has the form H =

Ealp(ea-±-ep) a pOa,p + Ea,b,p,q Uab(q)a ap+ 1q0 , Iq, where Ca is the energy of the

ath level in the wells, EP is the electron kinetic energy, and Uab(q) is the Fourier transform

of the perturbation matrix element between states 1a) and Ib). The independent nonzero

matrix elements of the perturbation are U2 1(r) = -d 2 1 [E exp(ikr - iQt) + c.c.], where d

is the dipole operator, Q is the frequency, k is the wave vector, and E is the electric-field

amplitude of the light wave, and U32 = r, where the tunneling amplitude r coincides with

the transfer integral t of Ref. 19. The independence of ep from the quantum state 1a)

implies that the subbands in quantum wells are parallel, which is of principal importance

for the theory, as discussed in Ref. 6.

The exact equation of motion for p, i.e. the quantum Liouville equation, can be

obtained in a conventional way by commuting the pair operator at • b1  - q with H

and adding the relaxation matrix ("collision integral") S which arises from the interaction

of an electron with the thermal bath represented by other electrons, scattering centers
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and phonons. This equation has the form

• 8p(p, r)
.Oi pr)-[s (p r)] +EZexp(iqr) (EP+4q- ep..Jq) p(p, q)

q

+ E exp(iqr) [U(q)p(p - 2q, r) - p(p + 'q, r)U(q)] + iS
q (1)

In the first sum on the right-hand side of Eq. (1), the shift of p by ± q takes into

account the velocity-selective excitation needed for LID, and such a shift describes the

recoil effect in the second sum. As determined by U(q) in Eq. (1), the magnitude of q

is on the order of the photon momentum k and is much less than the typical electron

momentum p. This justifies the lowest-order expansion in q in Eq. (1). The first order in

q suffices for the first sum, and neglect of the recoil effect is possible in the second sum

in Eq. (1), giving the quasiclassical Liouville equation

a " + ) p(p,r) = [e+U(r),p] +iS , (2)

where v = aep/8p is the electron group velocity.

We employ the strong collision model for the population and translation relaxations

and the relaxation-constant model for the dephasing, i.e., we adopt the following form of

matrix S:
Si11 =71 (o fI ) I 227 ((o 2

S33 3= H - n3) , S.b = -r.bpab fora5b.

Here n. M pa. is the population of the Ia) state (a = 1, 2,3), n(° ) is the equilibrium

population of the Ia) state, na ) = [1 + exp (,a + ep - EF)/T] -i, where EF is the Fermi
energy, T is temperature1 8 , 7y and -yi are the population relaxation constants (collision

rates) in wells I and 11, and rab is the polarization-relaxation constant for the transition

1a) +-+ Ib), which is expressed in terms of the pure dephasing rate tab in the form rab =

' (yi + -yii) + Ftb. Note that the condition 7' # -yJJ is necessary for the existence of the

effect.

The structure of the diagonal matrix elements of S implies that that an electron after

a single collision (an event of interaction with the thermal bath) acquires the equilibrium

populations n ° ) . It is worth noting that collision integral S (3) does not conserve the
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total electron concentration, which is clear because Tr(S) 5 0 for -t : 7u. This is a

well-known general problem for the strong collision model. It is possible to overcome this

problem and conserve the total electron concentration by introducing effective equilibrium

concentrations n °  as in Ref. 4. However, such a modification does not bring about any

substantial changes of the solutions. There is another possible interpretation, namely,

that the total electron concentration may, indeed, be changed due to optical excitation.

This is a likely situation in quantum wells because they are open system in which the

electrons are produced by outside donors and their equilibrium may be shifted by optical

excitation. We accept this interpretation and will not modify S (3).

To solve Eq. (2), we will use the rotating-wave approximation (RWA), which is

equivalent to retaining only terms in p with frequencies close to the exciting light fre-

quency 0 and neglecting multiple harmonics. This resonant approximation is well known

to be good for the exciting wave not too strong, so that the field broadening of levels is

much less than Q. In any case, if the exciting field is strong enough to violate the validity

of RWA, then the three-level scheme of Fig. 1 is not applicahle, and excitation to higher

levels and the continuum should be taken into account.

In RWA, the space-time dependence of Pab can be isolated in the form P12 =

fi12 exp i(kr- Qt), P13 = P13 exp i(kr- Qt), P23 = P23, where the amplitudes 012, P23, and

Pi13 are slowly [with respect to exp i(kr - 11t)] varying functions of r and t. The equations

for these amplitudes follow from Eqs. (2) and (3):

+ v. n = 21m(Gfil 2 ) + mY ni(0) - n ,

+ v. n2 = -2im (O1 2 + 7r023) + gI 2 n,( -2

+ v. 0 n3 = 2Im(7 23) + II n3(0) - n3,Ot O ) 1(4)

{a a)
+ 4 V. -r 012 = i*(2- ni) 1G- (n2 Z13 - g12fil2,

- +v • /51 = G*fi23 + i *0512 - 913/513,

- +v - P23 = -ir ° (n 3 - n2) + iGji 1 3 - g23fi23

Here gla I i(Q - kv -- al) +- Fl,, and gab = -i. +Fb, where a, b =2,3, Cab =C. -6b

7, ,,,•m ••••I~ lll ll• ilI I~lllm



is the transition frequency, and G = (d.)1 2 E. with the z-axis is perpendicular to the

structure plane (note that IGI is the Rabi frequency). We point out that the Doppler

shift kv in these formulas is not introduced phenomenologically, but rather appears as a

result of a consistent theory derived in RWA from the microscopic Hamiltonian.

The strong collision model for the collision integral S has been successfully used

previously to describe LID in gas mixtures1 , surface LID4 , and LID in a single quantum

well 4 . However, there is a problem in its application to double quantum wells and,

generally, to systems with coherent quantum tunneling, which we would like to point out

and discuss before using this model. This problem exists even without the light-wave

field, i.e. for G = 0, in which case Eq. (4) can easily be solved for the two upper levels

(a = 2,3) giving

(0) 1712 ( 2 (0)-I (0)) 1)n ° +21r23 23 +23 n Yli ± n 7n a

I 2 2 (62 + F2)- ( + 7-) (5)

IP231 = (n2 - n3) I 2 3 + r)

The problem mentioned above is evident in the case of completely coherent tunnel-

ing, i.e. for I-I' > 123. In this case, states 12) and 13) are mixed to form new stationary

states 1+) and I-) with energies = 2 + C3 23 + 4 Irt 2]. The populations of

these states n+ and n- can be found as the eigenvalues of p (5) in the form

2623 + £23) (6

The problem is that in the generic case the populations n(O) (6) do not conform to

the equilibrium because they do not have the required form of the Fermi distribution

= [1 + exp( _+ - SF)/T ] -', provided that the populations n( ° ) do [see after

Eq. (3)].

However, as we show below, this problems is eliminated in limiting cases which are

determined by the validity of at least one of the following three inequalities:

16231 >> 171 ,(7)

-21,631 > T, 1TI , (8)

T > Ir (9)
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Let us consider these three cases in some detail. (i) The inequality (7) means the

large mismatch of the levels and insures that the mixing of states 12) and 13) is small.
In this case, from Eq. (6) we obtain n+ ; n(0) and n- L n(o) i.e. the populations

n± are the equilibrium ones. (ii) From Eq. (8) it follows that both the 1+) levels are

almost unpopulated, conforming to the equilibrium. (iii) In the case of Eq. (9), two

subcases are possible. First, if 1e 23 1 < T, then from Eqs. (5) and (6) it follows that
+ n )  , as expected for the equilibrium. Second, if 1 231 > T, then we

return to the case of Eq. (7).

The inequalities (7)-(9) do not contradict each other. We point out that any or all

of these conditions may be valid experimentally. For instance, setting realistic values (see

Ref. 16 for the details of computing these values) for GaAs quantum wells of - 100 A
thickness as r 0.5 meV, E21 - 631 - 30 meV, and T - 5 meV (60 K), we conclude that

both Eqs. (8) and (9) are valid. This justifies the use of the collision integral (3).

III. SOLUTIONS AND NUMERICAL ILLUSTRATIONS

From symmetry considerations, the LID current is directed along the projection of

k onto the quantum structure plane (say, along the x-direction). Its density j can be

expressed in terms of the solution of Eq. (4) in two equivalent forms:

J=e f v (n + n 2 + n3)dp/(2r)2 = e(1 - yi/ ) f vn 3 dp/(27r)2 (10)

where v, = OaE/Op is the x-component of electron velocity and e is the electron charge.

The second expression in Eq. (10) corroborates the fact that the driving force of LID in

the system considered originates from the difference of the relaxation rates in wells I and

II.

The part of the homogeneous stationary solution of Eq. (4) needed to find the

current (10) can be exactly found as
n/0)D+n °)"I(B-A)+n°)t-y1A+ (n( ° )+n(O) +n() i °T/T) (BC- A2)

D + t1 B + (2 + tti/1y) (BC - A 2)
(11)

where D = 'yt-ytt + -yi [B + 2 (C - A)] and

A =2 17G12 Re (F-1 ) B =21 12 Re [(12913 + I12 ) F-]

C =-2G 1~2 Re [(913923 + IG 12) F]- , F 923 (912913 + 1712 ) + 912 1G 12

9



Let us consider some limiting cases of the solution (11). In the absence of tunneling

(r 0), n 3 = n(O) and, consequently, LID is absent as expected: the effect is driven

by quantum delocalization due to tunneling. In the optically nonsaturated case, which

is determined by the condition IG12 iY-I ,i-I < 1, we see from Eqs. (10) and (11) that

i 1G2, i.e. the LID current is proportional to the light intensity, as expected. The

analytical expression for this limiting case is cumbersome. To simplify it, we set n( ) =

n3° ) [see Eq. (9) and the discussion after it] and get from Eq. (11)

3 1(0) - 2 12n (0) 2cr 23 + ayi (32 + r32 )
Tl f 3  2~LT 62In7- 2

^/717(e32 + F32 ) + 2 r23(11I + 7Yi) (12)

a- Re(f') , c Re(g, 3 g 3f-) , f = g23 (912913+ 2)

For the large level mismatch, 16321 > 1'32, the LID current [see Eqs. (11) and (12)] tends

to zero, as expected for an effect driven by resonance tunneling. It can be easily seen from

Eq. (12) that when the temperature is relatively high, T > E21, the LID current vanishes

by virtue of n ° ) - n ( ) -* 0. Since for the nondegenerate gas LID also vanishes for T -- 0

because of v -- 0, it is clear that there exists an optimum temperature T. -, £21.

It is possible to obtain an analytical expression for the LID current only in a special

case, which we consider below. We adopt optically nonsaturated conditions. Aiso, we

assume the effective mass m* to determine the electron dispersion by setting v = p/m*,

and suppose the electron gas to be nongenerate using the Maxwell-Boltzman distribution

n(°) (v) cx Nexp (-e./T - 2/v ), where vt = (2T/m*) is the thermal velocity and N

is the 2-d density of electrons. Additionally, we assume that the tunneling is coherent,

i.e. 11 > r 1 2 , F1 3 , F 23 .

In this case the LID profile (12) consists of two nonoverlapping contours j±

arising from the excitation of the corresponding components 1±) of the split dou-

blet. Each of these contours centers about the corresponding transition frequency

E±= 621 + £31 2 (3 +41112 j. From Eqs. (10) and (12) we obtain

+ = 2n eNA+ ' I(d1),2I2 (17'- yf') Z- 1 [1 - exp(-e 21 /T)] C(:±)cos 2 0 , (13)

where Z = E. exp (-e, IIT) is the partition function, I is light intensity, d. is the normal

component of the electron dipole operator, 9 is the angle between the light-polarization

10



vector and the z-direction (the normal to the well plane), and K+ are dimensionless

coefficients and C is a function 14 of the complex arguments C± defined as
2

± += ±4 r 1' 03 + 4 [2r23 (E±1 - E21) + 62371 [3 + +23 ( I + )]-

C(C) = -'e { exp (_2) [1 + eif(i)]},

C± - e ±j)/kvt + i~r±/kvt, r. =-+[r13 (6±1 - 621) + r12 (C±1 - E31)] (632 +41l - •

(14)

Each of the contours (14), j+ and j-, has the same antisymmetric form with respect

to its central frequency e±1 as for LID in a single well 14 . However, the magnitudes of

these contours are different, determined by the K± coefficients. In the case of exact level

matching, 623 = 0, Eq. (14) is greatly simplified, giving

K± = -yi/(-yi+ -ti) , 1±= i(r13 +1r12) • (15)

In this case, K± and r± do not depend on r and on the I±)-state index. Consequently,

the LID current (13) does not depend on the interwell-barrier thickness, which is the

principal property of the coherent tunneling regime.

Let us consider numerical illustrations for the structure shown in Fig. 1 in the

effective-mass model for the nondegenerate electron gas adopting the following realistic

parameters: m* = 0.067m (m is the free-electron mass), C21 = 30 meV, -'1 = 0.1 meV,

71i = 0.2 meV, and Ir = 1 meV. These correspond16 to the GaAs wells with a width

150 A for the I well, and the A10.jGaO. 9As central barrier with a thickness 80 A. The

temperature T is set in the calculations as 10 meV (116 K).

Figure 2 displays the spectral profiles of the LID current for different polarization-

relaxation rates in the optically nonsaturated regime with exact level alignment (e23 =

0). These profiles are calculated with Eqs. (10) and (12) in terms of the drift velocity

Vd = j/eN normalized to vt and to IG12 (meV 2 ) to exclude the light intensity.

For the case Fab < Ir (weak polarization relaxation, or nearly coherent tunneling),

the LID profile [see Fig. 2(a)] consists of two nonoverlapping dispersion-type contours.

Both these contours are antisymmetric with respect to the corresponding centers which

are positioned at the transition frequencies of the split doublet levels, E+,. These contours

are quantitatively described by the terms J+ and j_ of Eq. (13). As the calculations show,
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in the case under consideration the LID profile does not significantly depend on r, i.e.

on the interwell-barrier thickness, as expected for coherent tunneling [see the discussion

of Eq. (15)].

For intermediate polarization relaxation, Pab i- Irl, Fig. 2(b) demonstrates that

the contours are overlapped, and the antisymmetry with respect to their centers is lost.

The magnitude of the LID current is decreased 20 times, while the increase of rFb is

only fivefold. This drastic decrease of Vd is indicative of the separation of the electron

gas into two distinguishable gases localized in the wells I and II, as discussed above.

A further fivefold increase of rab (see Fig. 2(c)] causes complete disappearance of the

two-contour structure, which is replaced by a single dispersion-type antisymmetric pro-

file centered near the transition frequency £21 in the I well, as expected for completely

incoherent (stepwise) tunneling. The LID current is further reduced twentyfold, man-

ifesting nearly complete loss of quantum coherence and separation of the electron gas

into two almost uncoupled distinguishable components. These findings directly confirm

the coherent quantum nature of the effect. Note that the intermediate relaxation case

illustrated in Fig. 2(b) is often realistic experimentally.

The dependence of the LID spectral profiles on the level mismatch £23 calculated

from Eqs. (10) and (12) is presented in Fig. 3, where the series of curves is shown with

621 = const and £31 being increased. The curve for the case of perfect matching (E23 = 0)

is the same as in Fig. 2(b). The change in profile with an increase of the mismatc' is

rather nontrivial. For moderate mismatch, 623 = 2 meV, the left ("red") component of

the profile, which corresponds to the transition 11) -- I-), is broadened and blue-shifted,

and its amplitude is increased. The last feature is counterintuitive, because the effect is

driven by the quantum tunneling which is suppressed with the level-mismatch increase.

The enhancement of the LID in this case is the result of the increased localization of

the I-)-state wave function in the I well. This localization brings about better overlap

of the wave functions in the ground state I1) and the excited state I-), which results in

an increase in the strength of the dipole transition 11) ) I-). Another reason for the

LID enhancement is the increase of the electron lifetime in the I-) state, because of the

electron localization in the undoped well I with low collision rate. These two factors bring

about the increase of the I-)-state population and, consequently, LID, counteracting the
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decrease in the tunneling caused by the intermediate mismatch.

The right ("blue") component of the profile (Fig. 3), which corresponds to the

transition I1) - 1+), in all cases is strongly diminished with the mismatch. This is

because the I+)-wave function localizes in the II well, and all the factors mentioned

above bring about a decrease of LID. When the mismatch becomes large (6 32 = 8 meV),

both the left and right components of the LID spectral profile decrease in magnitude

due to the diminished tunneling. However, the right component decreases much more, in

accord with the discussion above. In the case of the large mismatch, the left and right

components of the spectral profile are centered at the transition frequencies in uncoupled

wells, e2 1 and 63 1, as expected.

The dependence of the drift velocity on IG12, i.e. on the light intensity, calculated

with Eqs. (10) and (11) is shown in Fig. 4. This dependence at small intensities is linear in

accord with Eqs. (12) and (13), then reaches its maximum and starts to decrease sharply

due to field broadening of the levels. With the increase of dephasing (cf. the dashed and

solid curves), the current reaches a lower maximum value at higher intensities, which is

due to the separation of the electron gas into two distinguishable components, as discussed

above, and diminished velocity selectivity of the excitation. For the realistic values '12 =

i13 = 1 meV, the maximum LID current occurs at IG12 ; 0.1 meV 2 , corresponding to the

light intensity I ; 3 kW/cm 2 , which is easily reachable experimentally [as an estimate,

we adopted (d,), 2 = 30 cA]. The maximum drift velocity is fairly high, Vd " 2" 10-4 vt.

For a typical 2-d electron density N - 2. 1010 cm -2 and well width (in the y-direction)

L = 0.1 cm, this yields the total current per double well of J = eNLvd ; 1 pA, which is

indeed easily detectable.

IV. DISCUSSION

The theory of the effect of light-induced drift (LID) of electrons is presented in this

paper. Both qualitative and quantitative properties of the effect are discussed above in

Secs. II and III, in particular, in connection with the numerical illustrations (Figs. 2-

4). Here we do not attempt to repeat this discussion, but rather pursue two alternative

interrelated goals, namely, to show the place of this effect among other electron-transfer

and photocurrent effects in quantum wells, and to indicate the features of the effect which
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may be useful for its experimental observation and identification.

LID in coupled wells requires the tunneling of electrons between wells. Among the

large number of effects involving such tunneling, most are based on any type of tunnehng,

coherent or incoherent (stepwise). The transfer of an electron is what is observed, usually

by recording photoluminescence spectra (see, e.g., Refs. 20 and 21). In such experiments,

the specific mechanism of tunneling manifests itself only through the tunneling rate and its

dependence on the barrier thickness. In this connection, we point out that even incoherent

tunneling in some realistic cases can yield an appreciable electron transfer.16 However, the

coherence of tunneling is an essential property for time-resolved experiments, including

a recent one22 in which coherent electron oscillations have been observed.

The present effect manifests itself as the lateral stationary photocurrent which de-

pends on coherent tunneling between wells. The coupling of lateral and normal move-

ment induced by the optical excitation makes LID unique. Once again, we emphasize

that coherent tunneling is required, because collisions in one (doped) well should transfer

momentum to the electron gas as a whole. In contrast to this, incoherent tunneling brings

about separate existence of two distinguishable electron gases in the different wells, in

which case the collision rate is not state-dependent and LID is absent.

There is another effect, namely, the resistance resonance17 , which is also based on

the coupling of lateral and transverse motion and requires coherent tunneling. However,

the effect of Ref. 17 is purely electric, there is no light, and no intersubband transitions

and excited electronic states participate. Consequently, different tunneling and relaxation

processes contribute. There is another important distinction of LID: when there is no

coherent tunneling, LID is absent. By contrast, the tunneling changes resistance typically

by - 20% only 17 . Therefore, distinct from the resistance resonance, LID in the coupled

quantum wells is a background-free probe for coherent tunneling. Note that different

rates of polarization relaxation, i.e. different degrees of tunneling coherence, correspond

to essentially different forms of the LID profiles (see Fig. 2). Therefore, LID allows one

to obtain quantitative information on the tunneling coherence.

Now we discuss the features of LID in the coupled wells pertinent to its experimental

observation. As estimated at the end of Sec. III, the maximum current is achieved under
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rather low light intensity (, 1 kW/cm2 ) and is comparatively large, J 1 pA. We

emphasize that this is the current induced in one double well. Certainly, such a current

is easily detectable. The fundamental property14 of the LID current in a single quantum

well of being antisymmetric with respect to the detuning from the intersubband-transition

center is absent for two coupled wells in the generic case. However, as inspection of

Eqs. (10) and (11) shows, in the case of exact level matching (e23 = 0), the spectral

profile of LID is almost antisymmetric with respect to the frequency C21 = 631, i.e. to

the center of the split doublet. This property can be easily traced in Fig. 2.

Another distinctive feature of the effect is that it changes its sign if well I, and not

II, is doped. Of course, it is not necessary to have a different specimen with another

well doped. It is sufficient to change the bias sign to have the optical excitation in the

doped well. This is equivalent to switching wells I and II (see Fig. 1), which changes the

sign of the current. It is advantageous experimentally to have a geometrically symmetric

double well with one of the individual wells doped. The double well should be biased so

that the the ground state in one well is aligned with the first excited state in the other

well achieving the scheme shown in Fig. 1. When the bias reverses its sign, the current

also does.

We point out the importance of the alignment of the excited level in one well with

the ground state in the other, as shown in Fig. 1. Such a scheme excludes the counterfield

electron transfer 16 which may have interfered with LID if two excited states were aligned.

The response-relaxation time of LID, as follows from inspection of Eq. (4), is on

order of the reciprocal collision rates -y-1, 7'. Consequently, the realistic values of this

time are on a subpicosecond scale. Such a fast response makes LID in double quantum

wells promising for applications.
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FIGURE CAPTIONS

Fig. 1. Schematic of the coupled potential wells I and II. The overall ground state I1)

belongs in the I well. The excited state 12) in the I well and the ground state 13) in

the I well are aligned by the bias. The optically-excited intersubband transition

is denoted by the wavy arrow.

Fig. 2. Spectral profiles of the normalized LID-drift velocity for the polarization-relaxation

constants r 12 and r1 3 as indicated in the figures, with r23 = 1.4r12. Other param-

eters are given in the text.

Fig. 3. LID spectral profiles plotted for different values of the level mismatch -32, as shown

in the graph, with E21 = 30 meV. The relaxation constants are F 12 = F13 = 1 meV,

F23 = 1.4 meV.

Fig. 4. LID-drift velocities plotted against G 12 . The quantity 1G12 is proportional to the

light intensity, and 1G12 = 1 meV 2 approximately corresponds to I = 30 kW/cm 2 .

The constants LF12 and F 13 are indicated in the figure, and 123 = 1.4r13. Note the

double logarithmic scale.

18



if I

12>



0.7 1 (a) r1 2 -P13=0.2 rneV

z3 =0.3 meV

K0.0

-0.?1

20 25 3'0 35 40

0.03 (b) r12=r,,=i meV

r23= 1.4 meV

0.00

-0.03
20 25 30 35 40

0.002 - (c) r12=r13=5 meV

r236 meV

0.000

-0.002
20 25 30 35 410

Photon energy 0 (meV)



K0

CU

ss 0
0

0 0.

lolla/ 0



C~l C1\

I 4-

- aa

I I0


